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The Predict ion of Twinning  Modes in Metal Crystals 
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A new crystallographic analysis of deformation twinning in multiple lattices is developed. This 
enables the operative twinning modes to be predicted for all metal crystals, including c~-uranium. 
:Reasons are given for the non-appearance of certain modes expected theoretically. 

Introduction 

Deformation twinning of a crystal  m a y  be examined 
from two points of view, the macroscopic and the 
microscopic. On the macroscopic scale, twinning is 
achieved by  a homogeneous shear parallel to the 
composition or twinning plane K 1, along a shear 
direction 71. The plane perpendicular  to K 1, passing 
through ~71, is termed the  plane of shear. Associated 
with K1, % there exists a second undistorted plane K~, 
cutt ing K~ in a direction perpendicular  to 71 and 
cutt ing the  plane of shear in a direction 72. Twinned 
crystals are of two distinct kinds, referred to as first 
and second. In  the former, K 1 is rational,  and m a y  be 
regarded as the plane of an imagined mirror which 
reflects the structure of the twin into tha t  of the ma- 
trix. In  the latter, K 1 is irrational, but  71 is rational,  

* Now at Atomic Energy Research Establishment, Harwell, 
England. 

and m a y  be regarded as the direction of a n  imagined 
axis about which a rotat ion of 180 ° t ransforms the  
structure of the twin into tha t  of the matr ix .  For any  
given mode 

.K 1 = (hkl), K 2 = (h 'kT) ,  71 = [uvw], 7~ = [u 'v 'w'] ,  

there exists theoretically a conjugate or reciprocal 
mode 

K 1 = (h 'kT) ,  K z = (hkl), 71 = [u'v'w'], 7~ = [uvw],  

involving the same macroscopic shear. From the 
macroscopic point  of view, there should be nothing 
to choose between a mode and its conjugate, but  in 
certain cases the lat ter  has never  been reported 
operative. The conjugates to the modes (9) and (10), 
of Table 1, have been reported operative: these are 
the  only estabhshed examples in metals  of twinning 
of the second kind. 
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Nothing can be known directly of the twinning shear 
on the microscopic scale, and the only practicable 
method of progress is to guess at  the most likely net 
displacements of the atoms. In  simple lattices the 
problem is trivial, for the atoms have only to execute 
the macroscopic shear in order to arrive at their final 
positions. In multiple lattices the microscopic shear 
has necessarily a homogeneous component, which may 
be effectively identified with the macroscopic shear, 
together with inhomogeneous components which pro- 
duce no macroscopic effects but merely serve to gener- 
ate the twinned configuration. The resolution into the 
two components cannot be uniquely defined mathe- 
matically, a feature which constitutes the essential 
difficulty of the problem. Fortunately,  however, a 
considerable degree of systematization may be effected 
by introtlucing a new concept, that  of the semi- 
homogeneous shear, roughly described as a shear 
homogeneous on the finest possible scale compatible 
with producing a twinned configuration. This will be 
recognized as the closest possible analogue, indeed as 
the natural  generalization, of the completely homo- 
geneous shear assumed for simple lattices. With the 
restriction to semi-homogeneity, the microscopic shear 
corresponding to a given macroscopic shear can al- 
ways be uniquely defined, and a quanti tat ive crystal- 
lographic analysis of twinning becomes possible. 

Given a rational composition plane K 1, but not the 
shear direction ~h, there exists an infinite number of 
possible semi-homogeneous shears parallel to Kx, each 
defining a hypothetical macroscopic twinning shear. 
Their properties may  be examined by the technique 
of projecting the crystal on to K~, and the following 
result has already been obtained (Jaswon & Dove, 
1956): of all the macroscopic shears in question, the 
one along ~ has the smallest magnitude. In the present 
paper, the analysis is extended to examine the factors 
which determine the choice of Kx. Given any crystal 
plane K, projecting on K enables us to deduce the 
semi-homogeneous shear of smallest homogeneous com- 
ponent parallel to K, the magnitude of this hypo- 

thetical shear being denoted Y'. l~ow applying an 
inequality theorem proved in tho text ,  we arrive at 
the following significant conclusion: for a given crystal 
structure, ~9 ~ attains a minimum value, S, on the planes 
of indices K 1 and K~. Accordingly, the operative mode 
in a multiple lattice, as in a simple lattice, may be 
completely predicted by invoking a formal, geometrical 
requirement. The power of the method may be ap- 
preciated by the fact tha t  it predicts eight modes in 
a-uranium with shear values falling between 0.2 and 
0.3, five of which have so far been reported operative 
(Cahn, 1953; Lloyd & Chiswick, 1955). Several high 
shear modes seem to have been established in t i tanium 
(Liu & Steinberg, 1952; Rosi, Dube & Alexander, 
1953; Rosi & Perkins, 1953) and cannot be accounted 
for on the present ideas: almost certainly, however, 
the formal geometrical factor is here completely 
dominated by the presence of interstitial impurities 
(Churchman, 1954). A surprising prediction is the 
mode (4) below for diamond, but the usual assignment 
(5) seems to be based on an unjustified deduction from 
the f.c.c, lattice. Unfortunately, deformation twinning 
has never been substantiated in diamond, so tha t  n~ 
test of the theory is available in o this instance. 

We now enumerate (Table 1) the predicted twinning 
modes of metal crystals, grouped as far as possible 
to bring out significant comparisons. To each mode 
there corresponds, of course, a conjugate which is 
understood. The designations X or Y refer only to. 
modes in multiple lattices, and will be explained 
below. 

Bismuth stands also for arsenic and ant imony;  
diamond stands also for silicon and germanium, though 
here the formal geometrical factor may be dominated 
by the effect of impurities. Body-centred cubic metals, 
and fl-tin, are referred to face-centred tetragonal unit  
cells; this facilitates comparison with indium, and 
indeed also with diamond and f.c.c, metals. Analysi~ 
indicates tha t  twinning modes in a multiple lattice 
fall into two main classes, here denoted X and Y, 
depending on the mechanism of the inhomogeneous 

B i s m u t h  
Mercury 

C. p. h.  metals  

D i a m o n d  
F.  c. c. metals  

~-Tin 
Indium 
B. c. c. meta l s  

-Uranium 

g 1 

(110) 
(11o) 

(10i2) 

(111) 
(111) 

(331)* 
(101) 
(101)* 

(111) 
(112) 
(021) 
(130) 

* These reduce to 

Table 1 

K2 ~x ~79 S Unit cell 

(001) [001] [110] ] 2~/2w ~ l~.c. rhombohedrar w=coso~ Y (1t 
(001) [001] [110] f I/(1W2w)l/(1--w) ~ F. c. rhombohedral- (2t 

(lO1-~) [TOll] [10]'1] q2--3 i/3q Hexagonal q,=c/~ X (3~ 

(113) [1-i2] [332] 1/2~/2 F . c .  cubic  q----1' X (4) 
(11i) [112] [112] 1/]/2 F.c. cubic q.=--L (5) 

(111) [116] [112] (1--6q•)/2V2q F.c. tetragonal q=0'383 X (6) 
(10i) [10i] [101] (q2_ 1)/q F.c. tetragonal' q= 1.078 (7) 
(10T) [10T] [101] 1/l/2 F.c. tetragonal q-~-- 1,/~/2. (8 t 

'(176)' '[123]' [5i5] 0 . 2 1 4  Orthorhombic Y (9t 
'(1_~72)' '[372]' [312] 0.227 X (10) 
'(11, 1, 4) ~ '[100]' [132] 0.286 X (11t 
(110) [310] [110] 0.298 I r (12~ 

the usually quoted indices on transforming to the conventional unit collS.. 
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displacements. If a Y-mode is predicted for the crys- 
tal, this is the same as the predicted mode of the 
Bravais space lattice of the crystal; hence the com- 
parison between bismuth and mercury (the latter 
provides a realization of the Bravais space lattice of 
the former). If an X-mode is predicted, this differs 
from the predicted mode of the Bravais space lattice, 
particularly in having a smaller shear value--hence 
the comparison between (4) and (5), and between (6) 
and (7) or (8). :Not much significance, however, at- 
taches to the latter comparisons since the relative 
dimensions of the unit cells are so markedly different. 

Twinning of the second kind, with special reference 
to ~-uranium, will be taken up in a later paper. 

T h e  s e m i - h o m o g e n e o u s  t w i n n i n g  s h e a r  

A multiple lattice may be regarded as consisting of two 
interpenetrating lattices, so that  all the crystal planes 
occur in pairs. Using a convenient and obvious nota- 
tion, successive parallel planes of the one lattice are 
denoted . . .  2a, la, 0a, la, 2a, . . .  and the corre- 
sponding successive parallel planes of the other lattice 
are denoted . . .  2b, lb, 0b, lb, 2b, . . .  as depicted in 
Fig. l(i). Given a plane 0a, there are two distinct 

1 0  = : = - = = 

(~aO. b : : :. :.: ~ . . . .  ~. D : : : _ 

_ l b :  : : : : = 
10  : - : : .  : : .  

(i) (ii) (ui) 
Fig. 1. (i) Untwinned crystal (schematic). (ii) Ideal twin con- 

figuration. This could hardly be tolerated for the narrow-gap 
possibility. (iii) Compromise position of 0a, 0b. This is 
more likely than (ii). 

possibilities for the associated plane 0b, namely the 
neighbouring plane separated by the wide gap and 
the neighbouring plane separated by the narrow gap. 
This leads to several possibilities for the detailed struc- 
ture of K 1, all of which yield the same macroscopic 
results. As the mathematically simplest possibility, we 
identify K 1 with an imagined mirror plane midway 
between 0a, 0b (narrow gap), which reflects the 
twinned crystal into that  of the matrix, as indicated 
by the broken line D in Fig. 1. In an ideal twin, 
0a and 0b should be mirror images with respect to D, 
but such a configuration could hardly be tolerated 
energetically. I t  is much more likely that  the equi- 
librium stacking of 0a, 0b is largely maintained, and 
that  they assume a compromise position between twin 
and matrix as shown in Fig. l(iii). Fuller discussion 
of the transition region is presented in a preceding 
paper (Jaswon & Dove, 1956). 

As regards the net twinning displacements of the suc- 
ceeding crystal planes la, lb, 2a, 2b, . . . ,  we lay down 
the following general requirements for a semi-homo- 
geneous shear: 

1. The associated planes na, nb should become the 
images either of the V~a, ~b respectively or of 7~b, Ha 
respectively, with respect to D as mirror plane. 
This is the most direct identification between twin 
and parent crystals that  one can postulate. 

2. The deformation should be homogeneous on the 
scale of succeeding units of pairs of planes la,  lb; 
2a, 2b; . . . ,  the finest scale possible in a multiple 
lattice. More precisely, the net twinning displace- 
ments A~, B~ of na, nb should have a homogeneous 
component ½(A,+B,)  which is horizontal* and 
proportional to n. 

3. The inhomogeneous components, or reshuffles, 
+½(A~-B~) may be either horizontal or vertical*. 
Horizontal reshuffles should not amount to more 
than interatomic spacing along the most-closely- 
packed lattice direction of K 1. Vertical reshuffles 
are nothing more than an interchange on the levels 
of na and nb, in which case the stacking con- 
figuration of na, nb must be favourable for inter- 
change. 

These conditions can be realized in two distinct 
ways, effectively determined by the nature of the 
twinning displacements of la, lb. Most simply, the 
planes la, lb may undergo the least possible common 
translation T '  that  carries them directly over la,  lb 
respectively, whence they become the images of the 
latter by a vertical interchange (Y-mechanism). Al- 
ternatively, the planes la, lb undergo the least pos- 
sible purely horizontal displacements T + t ,  T - t  to 
become the images of lb, ]a respectively (X-mech- 
anism). In either event, however, the translation 2T 
or 2T', as the case may be, carries 2a, 2b directly over 
2a, 2b respectively, whence they become the images 
of the latter by a vertical interchange. Further, ac- 
cording to the Y-mechanism, the reshuffles within 
succeeding units, without exception, follow essentially 
the pattern set by la, ]b; according to the X-mech- 
anism, the reshuffles are alternately horizontal and 
vertical, following the patterns set by la,  lb and 2a, 2b 
respectively (see Appendix). For a given rational com- 
position plane, we expect the smaller of the vectors 
T, T '  to determine the twinning mechanism, and hence 
also the macroscopic shear. This is found to be the case. 
On the other hand, if the magnitudes T and T'  are 
equal, or comparable, the decisive factor is then the 
relative feasibility of the reaction paths. For instance 
T = T'  in the case of the bismuth mode (1), but this 
is undoubtedly a Y-mode: the planes ha, nb almost 
constitute a single plane of corrugated structure in 
which horizontal reshuffles could hardly be tolerated. 
I t  may be noted that  the Y-mechanism implies an 
effectively homogeneous shear on the microscopic 
scale, a feature which suggests tha t  Y-modes, if 
operative at all, should be operative very readily. 
This analysis is supported by two interesting facts: 

* In the present context, horizontal and vertical mean 
parallel and perpendicular to K 1 respectively. 
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twinning occurs with remarkable facility in bismuth, 
where, as we have seen, the operative mode (1) is an 
ideal Y-mode; the s-uranium Y-mode (127 competes 
with the X-mode (107, even though S(130)= 0.298, 
5'o12) = 0.227. Reaction-path analysis throws light on 
the non-appearance of the bismuth H a = (001) mode, 
i.e. the conjugate to (1): parallel to (0017, the corru- 
gated plane na, nb must pass directly over the preced- 
ing plane, atom over atom, before reaching its final 
position, a factor which should decisively inhibit 
(001 )-twinning compared with (110)-twinning. 

According to the preceding considerations, the trans- 
lation 2T or 2T', as the case may  be, always carries 
2_a directly over 2a. Conversely, by projecting 2a on to 
2a, we deduce at once the vector Q0 which is to be 
identified as either 2T or 2T'. No further information 
is available from this projection alone, but in any case 
Q0/2d should yield the magnitude and direction of the 
macroscopic shear. The method has been applied to 
all known composition planes, and gives the same re- 
sults as obtained by the more fundamental analysis 
based on la, lb. I ts  true importance, however, will 
emerge only in the next section. We remark here tha t  
the Bravais space lattice of the crystal may be for- 
really produced by omitting all the b planes, in which 
ease the succeeding lattice planes la, 2a, . . . ,  na . . . .  
undergo the twinning displacements T ~, 2T', . . . ,  
nT' ,  . . .  parallel to K 1. :Bearing in mind tha t  this 
set of displacements constitutes the homogeneous 
component of the crystal deformation if a Y-mech- 
anism is operative, we are led to the conclusion given 
in the introduction. 

T h e  i n e q u a l i t y  t h e o r e m  

We are now in a position to prove the central theorem 
of the present investigation. In Fig. 2 are drawn the 
traces of 2a, 0a, 2a, together with a lattice point P 

R Q R' 
2 

~d  

0 

Fig. 2. 
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in plane 2a and nearest neighbouring lattice point R 
in plane 2a; the vector P.R is referred to as ~ ' .  Plane 2a 
is carried directly over 2a by undergoing the displace- 
ment  Q = RR ' ,  where R'  lies directly over P ;  Q is 
evidently the least possible displacement of this kind. 
If 5 f  is the hypothetical macroscopic twinning shear 
defined by Q, we have 

,~2 .= Q2/4d2 ' i.e. l i d  2 = 4(~2+47/o~-2, 

where d is the interplanar spacing. Now replacing ~"  
by E, where E is the shortest possible lattice vector 
(of the Bravais space lattice of the crystal), we arrive 
at  the inequality 

l i d  2 < 4(SP2+4)/E2, 

satisfied by the 5~', d of any set of crystal planes (hkl). 
As a corollary, for any prescribed value of ~ ' ,  e.g. 
~9 ° = 1, the inequality places a restriction on l i d  e, 
and hence on the indices (hkl) satisfying the inequality. 
This theorem should be compared with the analogous 
theorem for simple lattices, proved in the preceding 
paper. 

If plane 2a has the equation h x + k y + l z  = 0, then 
2a has the equation h x + k y + l z  = 4. Accordingly, re- 
garding P as the origin, and writing ~ ' =  [ ~ ' ,  ~-u, ~-z], 
we have h ~ ' z + k ~ ' y + l ~ "  = 4. Of all the possible 
solutions of the equation h x + h y + l z  = 4, the solution 
~'~, ~-y, ~'~ defines the vector of shortest length, 
which property may be used as a means of identifying 
it. Once ~ -  is known for a given set of planes, we may  
write 

- Q = , ~ ' - 4 d ,  5f'2 = ,:~'2/4d2_ 4 .  

Alternatively, of course, Q may be found directly 
by projecting 2a on to 2a, as described above. In the 
case of the operative twinning plane Ka, we write 
~"  = ~'0, Q = Q0: our results show tha t  ~e, ~?x have 
the directions of ~'o, Q0 respectively. 

In  the diamond structure, 

= [½,½,0], E ~ = ½ ;  
also 

(i) l i d  2 =  h2÷k2÷/2 if h, k, 1 are all odd, 
(fi) l i d  ~ =  4(h2+k2÷/2) if h, k, 1 are not all odd. 

Accordingly, setting 5 f  = 1, the inequality assumes 
the form 

(i) h2-}-ku+/s < 40 if h, k, 1 are all odd, 
(ii) h2+k2+/2 < 10 if h, k, 1 are not all odd. 

hkl h s ÷ k2 ÷ l ~. ,Or 50 

111 3 .~ s 1 1/2]/2 
113 11 ~, ~, I i/2~/2 
133 19 1, ½, ½ 5/21/2 
115 27 1, ~-, ½ 7/2[/2 
135 35 0, l 

ACIO 

Table 2 

hkl h2 + k~. + l ~. $ r  

100 1 2, O, 0 0 
110 2 ], 1, 0 0 
120 5 O, 1, 0 1 
112 6 O, O, 1 ]/2 
122 9 O, 1 ~, ½ 1/V2 

2 
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The possibilities to be considered are set forth in 
Table 2. From this, and similar tables appropriate to 
other cases, we deduce the results quoted in the intro- 
duction. 

The conjugate to the modes (6) and (12) have never 
been reportec~ operative, but both planes in question 
happen to function as shp planes. I t  could be argued 
that  too much significance need not be attached to 
this effect, since the b.c.c. (112) plane functions both 
as a slip and as a twinning plane. The argument is not 
conclusive, though, for it has been pointed out by 
Chalmers & Martius (1952) that  slip on the system 
(121) [111] may be resolved into shp of equal amounts 
on the systems (110) [111], (011) [ l i l ] - - a n  inter- 
pretation consistent with the zigzag nature of the 
~surface traces often observed with {112} shp. Accept- 
ing the view that  the b.c.c. (112) plane is primarily 
a twinning plane, there are no exceptions to the rule, 
most strikingly exemplified by the f.c.c. {111} system, 
that  twinning is inhibited by slip. The physical sig- 
nificance of the rule, and of the 'least shear' criterion, 
is most probably to be understood in terms of the 
theory of dislocations, but this aspect falls outside 
the scope of the present analysis. 

A P P E N D I X  

By definition, the translation T '  carries plane la  
directly over la. Accordingly, if 2ta~ is the shift* from 
la  to la, we have, 

2ta~+T' = L (1) 

where L is a lattice vector parallel to K 1. Multiplying 
by n gives 

2ntaa+nT' = nL; (2) 

hence, noting that  2nt~ is the shift from ~a to na, 
and that  nL is a lattice vector parallel to K 1, equation 
(2) shows that  nT' carries na directly over ~a (and 
hence also nb directly over ~b). 

By definition, the translations T + t ,  T - t  carry 
• la, lb directly over lb, la  respectively. Accordingly, 

* The shift 2taa may be defined as the component, parallel 
to la, of the vector joining a lattice point of la to the nearest 
neighbouring lattice point of la. Similarly for the shifts 2tbb, tab 
mentioned subsequently. 

if tab is the shift from la to lb, and 2tbb (= 2t~) is 
the shift from lb to lb, we have 

(2tbb -- tab) + (T+t)  = La, (3) 

(2taa+tab)+ ( T - t ) =  Lb, (4) 

where La, L b are lattice vectors parallel to K 1. Adding 
(3) and (4) gives 

4 t ~ + 2 T  = La+Lb; (5) 

hence, bearing in mind that  4t~ is the shift from 2a 
to 2a, and that  La+L b is a lattice vector parallel to K1, 
equation (5) shows that  2T carries 2a directly over 2a. 
Multiplying (5) by n shows that  2nT carries 2na 
directly over 2na (and hence also 2nb directly over 
2nb). 

Multiplying (3) and (4) by n, and rearranging terms, 
we obtain 

(2ntbb-- tab) + nT + t ,  = nL~, (6) 

(2ntaa+ tab) + n T -  t~ = nLb, (7) 

where t~ = n t -  (n-1)tab. Noting that  2ntbb--tab , 
2ntaa+tab are the shifts from Y~b, Y~a to ha, nb respec- 
tively, equations (6) and (7) show that  na, nb may 
become the images of ~b, ~a by undergoing a common 
translation nT accompanied by horizontal reshuffles 
t~, - t~.  This result holds for all values of n, but when 
n is even the interchange mechanism of the preceding 
paragraph is more likely. Evidently, t ,  may be re- 
placed by (t~-L~), where L. is any lattic~ vector 
parallel to K1; on choosing L. suitably, we may ar- 
range for Itn-Lnl not to exceed an interatomic spacing 
along the most-close-packed lattice direction of K~. 
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